Towards the next generation GFDL global atmospheric model

Presented by

Chris Golaz

Atmosphere Working Group (AWG): first 18 months

Initial steps

- Resolution: 50 and 100 km (HiRAM)
- Aerosol cloud interactions (AM3)
- Simplified chemistry (P. Ginoux, new)
- New convection options
 - Double-plume (new)
 - Donner deep and UW shallow
- AMIP and short coupled simulations

Possible future steps

- Updated microphysics
- Unified large-scale cloud, turbulence

AM4 prototype configurations

Convective parameterization is key difference between AM4 prototype configurations

AM4a1: "double-plume"

- Shallow plume (UW)
- Deep plume (single plume)

AM4b1: "alternate closure"

- Shallow plume (UW)
- Donner deep (seven plumes)
- Closure based on Benedict et al. (2013)

Where is the precipitation coming from?

Cloud radiative effects: shortwave

Cloud radiative effects: longwave

Comparison with CMIP5 models (AMIP)

Cloud radiative effects root mean square error (RMSE)

AM4-A1
AM4-B1
GFDL-HIRAM-C180
GFDL-HIRAM-C360
GFDL-CM3

CMIP5 and GFDL Models (vs. CERES)

27 CMIP5 models, 84 realizations (min, 25%, median, 75%, max)
Courtesy Bruce Wyman

Balancing constraints

Model development requires balancing a multiplicity of constraints

- Top-down constraints
 - Fidelity of simulation
- Bottom-up constraints
 - Fidelity of process level representation

Indirect effect and 20th century warming Top-down constraint

CM3 is the first GFDL model with aerosol cloud indirect effect

- Details of warm rain formation have large impact on magnitude of aerosol cloud indirect effect.
- 20th century warming strongly impacted by indirect effect.

Microphysical cross section

Courtesy Kentaro Suzuki

Nakajima et al. (2010); Suzuki et al. (2010)

Comparisons of microphysical "fingerprints" Bottom-up constraint

Summary and future steps

AM4 prototype configurations

- Consolidation of AM3 and HiRAM.
- New convection options.
- Quality of simulations to-date is very encouraging.

Future steps

- Micro-physics (e.g. double moment, prognostic precipitation, aerosol-ice interactions, ice crystal shape).
- Unified large-scale cloud, turbulence (e.g. CLUBB or simplified PDF methods).
- Need to balance a multiplicity of constraints.